

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 2472-2481

Reaction of guaiazulene with *o*-formylbenzoic acid in diethyl ether (or methanol) in the presence of hexafluorophosphoric acid: comparative studies on ¹H and ¹³C NMR spectral properties of 3-guaiazulenylmethylium- and 3-guaiazulenium-ion structures

Shin-ichi Takekuma,^{a,*} Kazutaka Sonoda,^a Chika Fukuhara^a and Toshie Minematsu^b

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1 Kowakae, Higashi-Osaka-shi, Osaka 577-8502, Japan

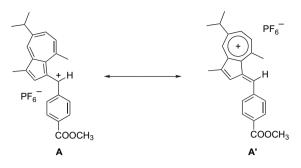
^bSchool of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka-shi, Osaka 577-8502, Japan

Received 6 October 2006; accepted 28 December 2006 Available online 8 January 2007

Abstract—Reaction of guaiazulene (1) with o-formylbenzoic acid (2) in diethyl ether in the presence of hexafluorophosphoric acid at 25 °C for 90 min gives the corresponding monocarbenium-ion compound, [2-(carboxy)phenyl](3-guaiazulenyl)methylium hexafluorophosphate (3), quantitatively, which upon treatment with a NaHCO₃ leads to 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5) in 96% isolated yield. Similarly, reaction of 1 with 2 in methanol under the same conditions as the above reaction affords two kinds of inseparable monocarbenium-ion compounds, 3 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (4) with an equilibrium between them, which upon reaction with a solution of NaBH₄ in ethanol at 25 °C for 30 min leads to 5 in 46% isolated yield and (3-guaiazulenyl)-[2-(methoxycarbonyl)phenyl]methane (6) in 37% isolated yield. Along with the ¹H and ¹³C NMR spectral properties of a solution of 5 in trifluoroacetic acid- d_1 at 25 °C, whose molecular structure is converted to a ca. 1:1 equilibrium mixture of 7 possessing a partial structure of the 3-guaiazulenylmethylium-ion and $\mathbf{8}$ possessing a partial structure of the 3-guaiazulenium-ion, comparative studies on the ¹H and ¹³C NMR spectral properties of 7 and 8 with those of the monocarbenium-ion compound, (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (A), 5, and 6 are reported. From these NMR studies, it can be inferred that the positive charge of the 3-guaiazulenylmethylium-ion part of 7 apparently is transferred to the seven-membered ring, generating a resonance form of the 3-guaiazulenyliumion structure n', and the same result can be inferred for the previously documented monocarbenium-ion compounds A-I. Moreover, referring to a comparative study on the C-C bond lengths of A observed by the X-ray crystallographic analysis with those of the optimized (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium-ion structure for A calculated by a WinMOPAC (Ver. 3.0) program using PM3, AM1, or MNDOD as a semiempirical Hamiltonian, the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3 calculated using PM3 is described.

© 2007 Elsevier Ltd. All rights reserved.

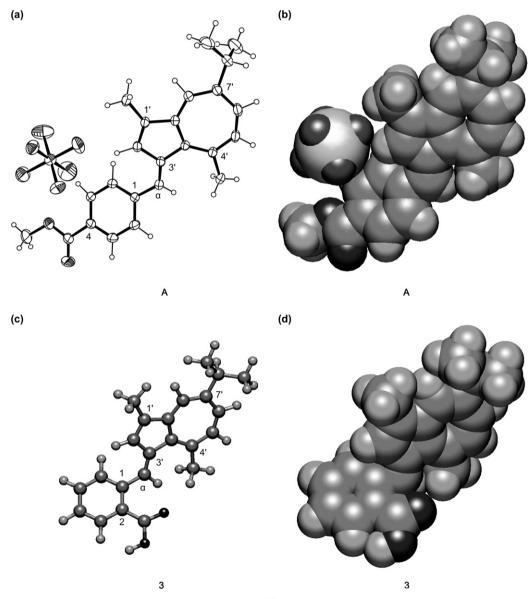
1. Introduction


The synthesis, stability, spectroscopic and chemical properties, crystal structures, electrochemical behavior, and theoretical study (e.g., ab initio calculations, DFT, GIAO-NMR, and NICS) of the azulenium-, ^{1–3} azulenylium-, and azulenylmethylium-ion structures^{4–14} have been studied to a considerable extent, and a large number of the results and discussion regarding those delocalized carbocation compounds have been well documented. In relation to those basic studies, we previously reported a facile preparation and the crystal structures as well as the spectroscopic, chemical,

and electrochemical properties of the delocalized mono- and dicarbenium-ion compounds stabilized by the expanded π -electron systems with a 3-guaiazulenyl group.^{15–28} During the course of our systematic investigations on the delocalized 3-guaiazulenyl-substituted carbenium-ion compounds derived from naturally occurring guaiazulene²⁹ (1), we have recently found (i) that the reaction of 1 with methyl terephthalaldehydate in methanol in the presence of hexafluorophosphoric acid at 25 °C for 2 h gave the corresponding monocarbenium-ion compound, (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (A), in 94% isolated yield; (ii) that the spectroscopic data of A led to the molecular structure with a resonance form of the 3-guaiazulenylium-ion structure \mathbf{A}' in acetonitrile (see Chart 1);²³ and (iii) that along with the spectroscopic data for A in acetonitrile, the X-ray crystallographic analysis for A (see Fig. 1a,b) also led to the crystal structure with a resonance

Keywords: Carbenium-ions; *o*-Formylbenzoic acid; Guaiazulene; 3-(3-Guaiazulenyl)-2-benzofuran-1(*3H*)-one; NMR studies; Properties.

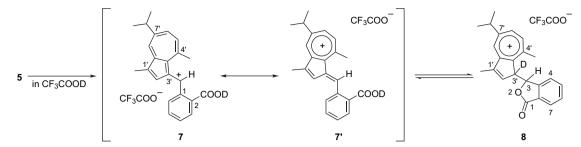
^{*} Corresponding author. Tel.: +81 6 6730 5880x4020; fax: +81 6 6727 4301; e-mail: takekuma@apch.kindai.ac.jp

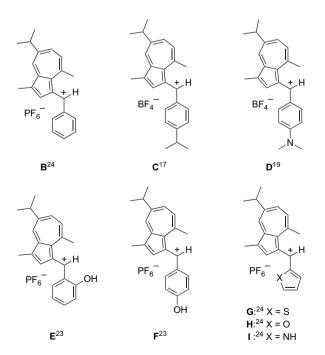

^{0040–4020/\$ -} see front matter @ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2006.12.094

form of \mathbf{A}' . As a systematic investigation on the above chemistry, our interest has quite recently been focused on a facile preparation, the molecular structure, and properties of the

delocalized monocarbenium-ion compound, [2-(carboxy)phenyl](3-guaiazulenyl)methylium hexafluorophosphate (3), which upon treatment with a NaHCO₃ leads to the formation of 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5). We now wish to report the detailed studies on the reaction of 1 with o-formylbenzoic acid (2) in diethyl ether (or methanol) in the presence of hexafluorophosphoric acid affording 3 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (4), whose compounds can be led to 5 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (6), respectively, and comparative studies on the ${}^{1}H$ and ¹³C NMR spectral properties of 7 possessing a partial structure of the 3-guaiazulenylmethylium-ion and 8 possessing a partial structure of the 3-guaiazulenium-ion, with an equilibrium between them, yielded from 5 dissolved in trifluoroacetic acid- d_1 at 25 °C (see Fig. 2) with those of A, 5, 6, and the previously documented monocarbenium-ion

Figure 1. (a) The ORTEP drawing of **A** (30% probability thermal ellipsoids).²³ (b) The crystal structure of **A** shown using a space-filling mode. (c) The optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3^{33} shown using a ball-and-stick mode. The selected bond lengths (Å): C1–C2: 1.405, C2–C3: 1.398, C3–C4: 1.389, C4–C5: 1.391, C5–C6: 1.390, C6–C1: 1.398, C1–C\alpha: 1.462, C1'–C2': 1.361, C2'–C3': 1.465, C3'–C3a': 1.479, C3a'–C4': 1.390, C4'–C5': 1.408, C5'–C6': 1.373, C6'–C7': 1.405, C7'–C8': 1.387, C8'–C8a': 1.389, C8a'–C1': 1.466, C8a'–C3a': 1.434, C3'–C\alpha: 1.349. (d) The optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3^{33} shown using a space-filling mode.




Figure 2. The formation of a ca. 1:1 equilibrium mixture of 7 (with a resonance form 7') and 8 from 5 dissolved in CF₃COOD at 25 °C.

compounds **B**– $I^{17,19,23,24}$ (see Chart 2). Moreover, referring to a comparative study on the C–C bond lengths of **A** observed by the X-ray crystallographic analysis with those of the optimized (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium-ion structure for **A** calculated by a WinMOPAC (Ver. 3.0) program using PM3, AM1, or MNDOD as a semiempirical Hamiltonian, the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for **3** calculated using PM3 is described.

2. Results and discussion

2.1. Reaction of guaiazulene (1) with *o*-formylbenzoic acid (2) in diethyl ether (or methanol) in the presence of hexafluorophosphoric acid; preparation and properties of 3-(3-guaiazulenyl)-2-benzofuran-1(3*H*)-one (5) and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (6)

The reaction of **1** with **2** in diethyl ether in the presence of hexafluorophosphoric acid at 25 °C for 90 min gave the corresponding monocarbenium-ion compound, [2-(carboxy)-phenyl](3-guaiazulenyl)methylium hexafluorophosphate^{30,31} (**3**) (yellow powder; $C_{23}H_{23}O_2$: [M–PF₆]⁺, determined by

the exact FABMS spectrum using 3-nitrobenzyl alcohol as a matrix reagent), quantitatively, which upon treatment with aq NaHCO₃ led to 3-(3-guaiazulenyl)-2-benzofuran-1(3*H*)-one (**5**) in 96% isolated yield (see Fig. 3 and Section 4.1.1), whose molecular structure was established on the basis of spectroscopic data [UV–vis, IR, exact FABMS, ¹H, and ¹³C NMR including 2D NMR (i.e., H–H COSY, HMQC— ¹H detected hetero nuclear multiple quantum coherence, and HMBC—¹H detected hetero nuclear multiple bond connectivity)].

Compound 5 was blue prisms $[R_f=0.25 \text{ on silica gel TLC}]$ (hexane-AcOEt=8:2, v/v)], mp 113 °C and decomp. >200 °C [determined by the thermal analysis (TGA and DTA)]. The characteristic UV-vis (CH₃CN) absorption bands based on guaiazulene³² (1) were observed and the longest visible absorption wavelength appeared at λ_{max} 590 nm (log ε =2.71), indicating a hypsochromic shift in comparison with that of 1 (λ_{max} 600 nm; log ϵ =2.68). The IR (KBr) spectrum showed a specific band based on the C=O group of lactone at 1755 cm^{-1} . The protonated molecular formula $C_{23}H_{23}O_2$ ([M+H]⁺) was determined by the exact FABMS spectrum using 3-nitrobenzyl alcohol as a matrix reagent. The 500 MHz ¹H NMR (CD₃CN) spectrum showed signals based on the structure of 2-benzofuran-1(3H)-one possessing a 3-guaiazulenyl group at the C-3 position, whose signals (δ and J values) were carefully assigned using the H-H COSY technique and the computerassisted simulation analysis (see Section 4.1.1). The 125 MHz ¹³C NMR (CD₃CN) spectrum exhibited 22 carbon signals (δ , ppm) assigned by the HMQC and HMBC techniques (see Section 4.1.1). Thus, these spectroscopic data for 5 led to the molecular structure, 3-(3-guaiazulenyl)-2benzofuran-1(3H)-one (see Fig. 3). Furthermore, the reaction of 5 with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) in CH₂Cl₂ at 25 °C for 10 min gave numerous products, simultaneously, whose compounds were observed by the silica gel TLC (hexane-AcOEt=8:2, v/v). Thus, 3-(3guaiazulenyl)-2-benzofuranium-1-one could not be obtained by this reaction.

Similarly, the reaction of **1** with **2** in methanol under the same conditions as the above reaction afforded two kinds of inseparable monocarbenium-ion compounds, **3** and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (**4**) with an equilibrium between them (yellow powder; $C_{24}H_{25}O_2$: $[M-PF_6]^+$, determined by the exact FABMS spectrum using 3-nitrobenzyl alcohol as a matrix reagent), which upon reaction with a solution of NaBH₄ in ethanol at 25 °C for 30 min led to **5** in 46% isolated yield

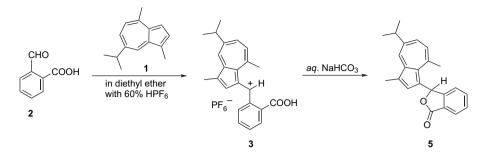


Figure 3. Reaction of 1 with 2 in diethyl ether in the presence of hexafluorophosphoric acid at 25 °C for 90 min gives 3, quantitatively, which upon treatment with aq NaHCO₃ leads to 5 in 96% isolated yield.

and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (6) in 37% isolated yield (see Fig. 4 and Section 4.1.2), whose molecular structures were established on the basis of similar spectroscopic analyses as for 5.

Compound **6** was a blue powder [R_f =0.50 on silica gel TLC (hexane–AcOEt=8:2, v/v)], mp 87 °C and decomp. >200 °C [determined by the thermal analysis (TGA and DTA)]. The characteristic UV–vis (CH₃CN) absorption bands based on guaiazulene³² (**1**), which spectral pattern resembled those of **1** and **5**, were observed and the longest visible absorption wavelength appeared at λ_{max} 622 nm (log ε =2.69), indicating a bathochromic shift in comparison with those of **1** (λ_{max} 600 nm; log ε =2.68) and **5** (λ_{max} 590 nm; log ε =2.71). The IR (KBr) spectrum showed a specific band based on the C=O group of ester at 1713 cm⁻¹, which revealed lower wavenumber shift as compared with that of **5** (1755 cm⁻¹). The molecular formula C₂₄H₂₆O₂ (M⁺) was determined by the exact FABMS spectrum using 3-nitrobenzyl alcohol as a matrix reagent. The 500 MHz ¹H NMR (CD₃CN) spectrum showed signals based on the structure of 2-(methoxycarbonyl)benzene possessing a

3-guaiazulenylmethyl group at the C-1 position, which signals (δ and *J* values) were carefully assigned using the H–H COSY technique and the computer-assisted simulation analysis (see Section 4.1.2). The 125 MHz ¹³C NMR (CD₃CN) spectrum exhibited 23 carbon signals (δ , ppm) assigned by the HMQC and HMBC techniques (see Section 4.1.2). Thus, these spectroscopic data for **6** led to the molecular structure, (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (see Fig. 4). Similarly, as in the case of **5**, the reaction of **6** with DDQ in CH₂Cl₂ at 25 °C for 10 min afforded many products, simultaneously, whose compounds were observed by the silica gel TLC (hexane–AcOEt=8:2, v/v). Thus, (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium-ion compound could not be obtained by this reaction.

2.2. ¹H and ¹³C NMR spectral properties of 5 in trifluoroacetic acid- d_1 and comparative studies on ¹H and ¹³C NMR spectral properties of 5–8 with those of A–I

The ¹H and ¹³C NMR spectra including 2D NMR (i.e., H–H COSY, HMQC, and HMBC) of a solution of **5** in trifluoro-acetic acid- d_1 , whose molecular structure was converted to

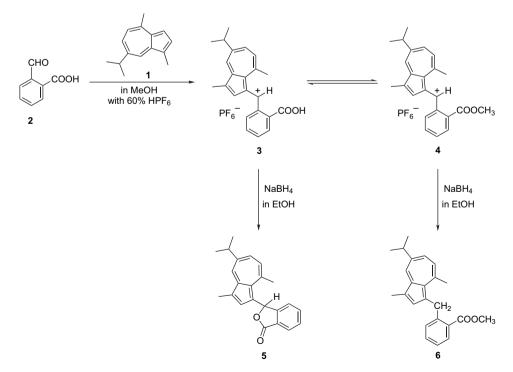


Figure 4. Reaction of 1 with 2 in methanol in the presence of hexafluorophosphoric acid at 25 °C for 90 min affords 3 and 4, with an equilibrium between them, which upon reaction with a solution of NaBH₄ in ethanol at 25 °C for 30 min leads to 5 in 46% isolated yield and 6 in 37% isolated yield.

two kinds of carbocation compounds, i.e., the deuteronated **5** at the carbonyl group, which rapidly led to the formation of [2-(carboxy- d_1)phenyl](3-guaiazulenyl)methylium-ion structure **7**, and the deuteronated 3-(3-guaiazulenyl)-2-ben-zofuran-1(3*H*)-one **8** at the C-3' position (see Fig. 2), simultaneously, were measured. A careful study of the 600 MHz ¹H NMR signals for this measured solution at 25 °C led us to a ca. 1:1 equilibrium mixture of **7** and **8**, whose compounds were extremely stable in trifluoroacetic acid- d_1 without decomposition. It is noteworthy that, although **8** possesses two diastereomers, a kind of NMR signals based on **8** was observed.

Comparative studies on the chemical shifts (δ , ppm) for the ¹H and ¹³C NMR signals of the 3-guaiazulenylium-ion part of **7** with those of the 3-guaiazulenium-ion part of **8** are shown in Tables 1 and 2. As a result, it was found (i) that, although the H-8' (8.63) proton signal of **8** coincided with that of **7** (8.66), the H-2' (6.50) proton signal of **8** showed larger up-field shift in comparison with that of **7** (H-2':

Table 1. The ¹H NMR chemical shifts (δ , ppm) for the 3-guaiazulenyliumion parts of **A** and **7**, and the 3-guaiazulenium-ion part of **8** in CF₃COOD

Compound	Α	7	8	Difference ^a
H-2′	7.89	7.61	6.50	+1.11
H-5′	8.58	8.57	8.65	-0.08
H-6′	8.44	8.43	8.58	-0.15
H-8′	8.65	8.66	8.63	+0.03

^a Differential of the chemical shifts for 7 and 8.

Table 2. The ¹³C NMR chemical shifts (δ , ppm) for the 3-guaiazulenyliumion parts of **A** and **7**, and the 3-guaiazulenium-ion part of **8** in CF₃COOD

Compound	Α	7	8	Difference ^a
C-1′	148.7	146.3	149.9	-3.6
C-2'	142.6	142.1	145.5	-3.4
C-3′	143.8	141.1	57.4	+83.7
C-3a'	155.4	154.1	166.2	-12.1
C-4′	159.4	158.4	159.8	-1.4
C-5′	152.5	151.4	152.2	-0.8
C-6′	146.5	145.4	147.4	-2.0
C-7′	176.1	174.5	179.7	-5.2
C-8′	140.4	139.4	140.7	-1.3
C-8a′	164.6	164.1	170.1	-6.0

^a Differential of the chemical shifts for 7 and 8.

7.61), and the H-5' (8.65) and H-6' (8.58) proton signals of 8 revealed slight down-field shifts in comparison with those of 7 (H-5': 8.57 and H-6': 8.43) (see Table 1); and (ii) that, although the deuteronated C-3' (57.4, J_{C-D} =19.4 Hz) carbon signal of 8 showed larger up-field shift in comparison with that of 7 (C-3': 141.1), the other carbon signals of 8 revealed down-field shifts in comparison with those of 7 (see Table 2); namely, the order of the larger down-field shift was C-3a' $(\Delta \delta \ 12.1 \text{ ppm}) > \text{C-8a'} \ (6.0) > \text{C-7'} \ (5.2) > \text{C-1'} \ (3.6) > \text{C-2'}$ (3.4)>C-6'(2.0)>C-4'(1.4)>C-8'(1.3)>C-5'(0.8). Thus, an apparent difference between the chemical shifts for the ¹H and ¹³C NMR signals of the 3-guaiazulenyliumion part of 7 and those of the 3-guaiazulenium-ion part of 8 was observed. Furthermore, comparative studies on the chemical shifts for the ¹H and ¹³C NMR signals of the 3-guaiazulenylium-ion part of 7 with those of (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate²³ (**A**) under the same measurement conditions are shown in Tables 1 and 2. As a result, it was found (i) that, although the H-2' (7.61) proton signal of **7** showed larger up-field shift in comparison with that of **A** (H-2': 7.89), owing to the influence of the ring current of the benzene ring, whose influence was supported by the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure of **3** (see Fig. 1c,d),³³ the other proton signals of **7** coincided with those of **A** (see Table 1); and (ii) that the chemical shifts for all the carbon signals of **7** resembled those of **A** (see Table 2).

Comparative studies on the chemical shifts for the ¹H and ¹³C NMR signals of 5 with those of 8 are shown in Tables 3 and 4. As a result, it was found (i) that, although the H-2' (6.50) and H-3 (6.58) proton signals of 8 showed larger up-field shifts in comparison with those of 5 (H-2': 6.99; H-3: 7.56), the other proton signals of 8 revealed down-field shifts in comparison with those of 5 (see Table 3); namely, the order of the larger down-field shift was H-5' ($\Delta\delta$ 1.43 ppm)>H-6' (1.02)>H-4 (0.53)>H-8' (0.37)>H-5 (0.25)>H-6 (0.13)>H-7 (0.08); (ii) that, although the deuteronated C-3' (57.4, $J_{C-D}=19.4$ Hz) carbon signal of the 3-guaiazulenium-ion part of 8 showed larger up-field shift in comparison with that of the 3-guaiazulenyl group of 5 (C-3': 121.5), the other carbon signals of 8 revealed downfield shifts in comparison with those of 5 (see Table 4); namely, the order of the larger down-field shift was C-7' $(\Delta \delta \ 36.6 \text{ ppm}) > \text{C-}3a' \ (30.6) > \text{C-}8a' \ (30.0) > \text{C-}1' \ (24.1) >$ C-5' (22.4)>C-4' (13.3)>C-6' (10.8)>C-2' (7.5)>C-8'(5.0); and (iii) that, although the C-3 (79.5), C-3a (149.1), C-4 (123.2), and C-7a (125.2) carbon signals for the 2benzofuran-1(3H)-one part of 8 showed up-field shifts in comparison with those of 5 (C-3: 80.2, C-3a: 152.0, C-4: 124.8, and C-7a: 127.6), the other carbon signals of 8 revealed down-field shifts in comparison with those of 5 (see Table 4); namely, the order of the larger down-field shift was C-1 ($\Delta\delta$ 4.3 ppm)>C-5 (2.8)>C-6 (2.3)>C-7 (2.2). Thus, an apparent difference between the chemical shifts for the ¹H and ¹³C NMR signals of **5** and those of **8** was observed.

Comparative studies on the chemical shifts for the ¹H and ¹³C NMR signals of **6** with those of **7** are shown in Tables 5 and 6. As a result, it was found (i) that all the proton signals of **7** showed larger down-field shifts in comparison with those of **6** (see Table 5); namely, the order of the larger down-field shift was HC- α ($\Delta\delta$ 4.56 ppm)>H-5' (1.75)> H-6' (1.12)>H-6 (0.74)>H-8' (0.55)>H-3 (0.53)>H-5 (0.50)>H-4 (0.46)>H-2' (0.39); (ii) that all the carbon signals for the 3-guaiazulenylmethylium-ion part of **7** showed down-field shifts in comparison with those for the

Table 3. The selected ¹H NMR chemical shifts (δ , ppm) for 5 in CD₃CN and 8 in CF₃COOD

Compound	5	8	Difference	Compound	5	8	Difference
H-2′	6.99	6.50	+0.49	H-3	7.56	6.58	+0.98
H-5′	7.22	8.65	-1.43	H-4	7.42	7.95	-0.53
H-6′	7.56	8.58	-1.02	H-5	7.74	7.99	-0.25
H-8′	8.26	8.63	-0.37	H-6	7.63	7.76	-0.13
				H-7	7.92	8.00	-0.08

Table 4. The selected ¹³ C NM	R chemical shifts (δ ,	ppm) for 5 in CD ₃ Cl	N and 8 in CF ₃ COOD
--	--------------------------------	----------------------------------	---------------------------------

Compound	5	8	Difference	Compound	5	8	Difference
C-1′	125.8	149.9	-24.1	C-1	171.2	175.5	-4.3
C-2'	138.0	145.5	-7.5	C-3	80.2	79.5	+0.7
C-3′	121.5	57.4	+64.1	C-3a	152.0	149.1	+2.9
C-3a'	135.6	166.2	-30.6	C-4	124.8	123.2	+1.6
C-4′	146.5	159.8	-13.3	C-5	135.1	137.9	-2.8
C-5′	129.8	152.2	-22.4	C-6	130.1	132.4	-2.3
C-6′	136.6	147.4	-10.8	C-7	125.8	128.0	-2.2
C-7′	143.1	179.7	-36.6	C-7a	127.6	125.2	+2.4
C-8′	135.7	140.7	-5.0				
C-8a'	140.1	170.1	-30.0				

Table 5. The selected ¹H NMR chemical shifts (δ , ppm) for **6** in CD₃CN and **7** in CF₃COOD

Compound	6	7	Difference	Compound	6	7	Difference
H-2' H-5'	7.22 6.82	7.61 8.57	-0.39 -1.75	H-3 H-4	7.87 7.27	8.40 7.73	-0.53 -0.46
H-6′	0.82 7.31	8.43	-1.12	H-5	7.35	7.85	-0.50
H-8′	8.11	8.66	-0.55	Н-6 НС-а	6.80 4.91 ^a	7.54 9.47 ^b	-0.74 -4.56

^a 1-CH₂-3'.

^b HC⁺- α .

Table 6. The selected ¹³C NMR chemical shifts (δ , ppm) for 6 in CD₃CN and 7 in CF₃COOD

Compound	6	7	Difference	Compound	6	7	Difference
C-1′	125.5	146.3	-20.8	C-1	145.3	138.8	+6.5
C-2′	141.5	142.1	-0.6	C-2	130.6	128.9	+1.7
C-3′	126.6	141.1	-14.5	C-3	131.1	133.9	-2.8
C-3a'	134.0	154.1	-20.1	C-4	126.8	132.3	-5.5
C-4′	146.4	158.4	-12.0	C-5	132.9	135.5	-2.6
C-5′	127.1	151.4	-24.3	C-6	131.5	134.2	-2.7
C-6′	135.9	145.4	-9.5	C-a	35.9 ^a	151.8 ^b	-115.9
C-7′	140.1	174.5	-34.4				
C-8′	134.4	139.4	-5.0				
C-8a'	138.8	164.1	-25.3				

^a 1-CH₂-3'.

^b HC⁺-α.

3-guaiazulenylmethyl group of **6** (see Table 6); namely, the order of the larger down-field shift was C- α ($\Delta\delta$ 115.9 ppm)>C-7' (34.4)>C-8a' (25.3)>C-5' (24.3)>C-1' (20.8)>C-3a' (20.1)>C-3' (14.5)>C-4' (12.0)>C-6' (9.5)> C-8' (5.0)>C-2' (0.6); and (iii) that, although the C-1 (138.8) and C-2 (128.9) carbon signals for the 2-(carboxy)phenyl group of **7** showed up-field shifts in comparison with those of the 2-(methoxycarbonyl)phenyl group of **6** (C-1: 145.3; C-2: 130.6), the other carbon signals of **7** revealed down-field shifts in comparison with those of **6** (see Table 6); namely, the order of the larger down-field shift was C-4 ($\Delta\delta$ 5.5 ppm)>C-3 (2.8)>C-6 (2.7)>C-5 (2.6). Thus, an apparent difference between the chemical shifts for the ¹H and ¹³C NMR signals of **6** and those of **7** was observed.

From comparative studies on the ¹H and ¹³C NMR spectral properties of **7** possessing a partial structure of the 3-guaiazulenylmethylium-ion and **8** possessing a partial structure of the 3-guaiazulenium-ion with those of **A**, **5**, and **6**, it could be inferred that the positive charge of the 3-guaiazulenylmethylium-ion part of **7** apparently was transferred to the seven-membered ring or the benzene ring, generating a resonance form of the 3-guaiazulenylium- or phenylium-ion structure and, further, the same result could be inferred for **A**. Moreover, comparative studies on the chemical shifts for the ¹H and ¹³C NMR signals of the 3-guaiazulenylmethylium-ion part for **7** with those of the 3-guaiazulenylmethylium-ion parts for the previously documented monocarbenium-ion compounds $B-I^{17,19,23,24}$ (see Chart 2) are shown in Tables 7 and 8. The chemical shifts for all the proton and carbon signals of **B**–I resembled those of **7** and **A**. Thus, the same results as for **7** and **A** could be inferred for **B**–I.

2.3. The optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3

In the previous paper,²³ we reported the crystal structure of (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (A) (see Fig. 1a,b). The structural parameters of A revealed (i) that, from the dihedral angles between the least-squares planes, it was found that the plane of the 4-(methoxycarbonyl)phenyl group twisted by 33.4° from the plane of the 3-guaiazulenyl group owing to the influence of a slight steric hindrance between the H-2 and H-6 atoms of the 4-(methoxycarbonyl)phenyl group and

Table 7. The ¹H NMR chemical shifts (δ , ppm) for the 3-guaiazulenylmethylium-ion parts of **7** and **B–I**

Compound	7 ^a	\mathbf{B}^{b}	\mathbf{C}^{b}	D ^a	$\mathbf{E}^{\mathbf{b}}$	$\mathbf{F}^{\mathbf{b}}$	G ^a	\mathbf{H}^{a}	\mathbf{I}^{a}
H-2′	7.61	7.99	8.06	7.81	7.98	8.08	8.40	8.68	8.37
H-5′	8.57	8.55	8.53	8.60	8.48	8.43	8.40	8.36	8.29
H-6′	8.43	8.44	8.44	8.45	8.39	8.37	8.30	8.28	8.30
H-8′	8.66	8.59	8.61	8.66	8.57	8.56	8.63	8.62	8.73
HC ⁺ -α	9.47	8.78	8.79	8.74	9.01	8.72	8.91	8.34	8.81

^a In CF₃COOD.

Table 8. The ¹³C NMR chemical shifts (δ , ppm) for the 3-guaiazulenylmethylium-ion parts of 7 and **B–I**

Compound	7^{a}	\mathbf{B}^{b}	\mathbf{C}^{b}	\mathbf{D}^{a}	$\mathbf{E}^{\mathbf{b}}$	$\mathbf{F}^{\mathbf{b}}$	G ^a	\mathbf{H}^{a}	\mathbf{I}^{a}
C-1'	146.3	145.5	153.9	145.8	145.4	144.6	146.1	145.6	142.6
C-2'	142.1	140.6	141.7	141.9	141.8	141.8	141.7	144.4	142.1
C-3′	141.1	139.6	145.9	144.4	139.2	137.3	137.0	136.1	132.4
C-3a'	154.1	152.9	155.6	149.4	153.6	153.3	155.5	155.1	153.1
C-4′	158.4	157.3	157.9	155.5	157.5	157.1	157.3	156.9	155.4
C-5′	151.4	150.1	150.5	147.6	150.3	149.1	150.0	149.7	146.3
C-6′	145.4	144.3	145.0	146.8	144.8	144.3	145.2	144.9	143.7
C-7′	174.5	171.2	171.4	176.8	170.9	169.3	171.6	171.4	165.9
C-8′	139.4	139.1	139.9	140.6	139.8	139.6	140.1	139.7	139.5
C-8a'	164.1	160.9	161.2	159.9	161.1	159.6	161.6	161.7	157.7
$C^+-\alpha$	151.8	149.6	151.0	153.0	146.2	151.7	143.5	133.0	139.7

^a In CF₃COOD.

^b In CD₃CN.

the H-2' atom of the 3-guaiazulenyl group; (ii) that the 3guaiazulenylmethylium substituent clearly underwent bond alternation between the single and double bonds; (iii) that the 4-(methoxycarbonyl)phenyl group also clearly underwent bond alternation between the single and double bonds; (iv) that the average C-C bond length for the seven-membered ring of the 3-guaiazulenyl group was 1.401 Å; (v) that the bond lengths of the five-membered ring of the 3-guaiazulenyl group appreciably varied between 1.345 and 1.491 Å; in particular, the C1'-C2' bond length (1.345 Å) was characteristically shorter than the average C–C bond length for the five-membered ring (1.437 Å); and (vi) that the C3'-C α bond length (1.352 Å) was also characteristically shorter than the $C\alpha$ -C1 bond length (1.468 Å). Moreover, it could be inferred (vii) that, from the C-C bond lengths, although the positive charge of A in the single crystal was mainly localized at the $C\alpha$ carbon atom, forming a 3-guaiazulenylmethylium-ion structure, the positive charge apparently was transferred to the seven-membered ring, forming a 3-guaiazulenvlium-ion structure; and (viii) that, from the result of the dihedral angle between the least-squares planes of the 3-guaiazulenyl group and the 4-(methoxycarbonyl)phenyl group, formation of a conjugated π -electron system between them, which combined with the Ca carbon atom, was possible. Thus, the X-ray crystallographic analysis of A led to the crystal structure, (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate with a resonance form of the 3-guaiazulenvlium-ion structure A' (see Chart 1). Along with the crystal structure of A, from a comparative study on the C-C bond lengths of the crystal structure of A with those of the optimized (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium-ion structure calculated by a WinMOPAC (Ver. 3.0) program using PM3, AM1, or MNDOD as a semiempirical Hamiltonian, the C-C bond lengths calculated using PM3 more resembled those of the crystal structure of A in

comparison with those calculated using AM1 and MNDOD (see Table 9). Thus, referring to the above results, the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for **3** has been calculated using PM3 (see Fig. 1c,d),³³ because it was very difficult to obtain a single crystal of **3** suitable for the X-ray crystallographic analysis.

Atom	A (X-ray)	A (PM3)	A (AM1)	A (MNDOD)
C1'-C2'	1.345	1.362	1.369	1.375
C2'-C3'	1.454	1.464	1.469	1.476
C3'–C3a'	1.491	1.478	1.480	1.494
C3a'-C4'	1.401	1.391	1.389	1.410
C4'-C5'	1.416	1.408	1.408	1.423
C5'-C6'	1.365	1.375	1.377	1.394
C6'-C7'	1.409	1.401	1.402	1.419
C7'–C8'	1.391	1.386	1.390	1.409
C8'–C8a'	1.386	1.389	1.387	1.408
C8a'-C1'	1.459	1.462	1.471	1.482
C3a'–C8a'	1.438	1.438	1.444	1.459
C3'-Ca	1.352	1.353	1.353	1.365
Ca-C1	1.468	1.455	1.450	1.477
C1-C2	1.403	1.401	1.406	1.415
C2-C3	1.373	1.389	1.391	1.405
C3–C4	1.392	1.396	1.402	1.413
C4–C5	1.389	1.395	1.399	1.412
C5-C6	1.385	1.390	1.393	1.406
C6-C1	1.403	1.399	1.403	1.415

The following MO calculation program and calculation conditions were used (i.e., the software: WinMOPAC Ver. 3.0 developed by Fujitsu Ltd., Japan; semiempirical Hamiltonian: PM3, AM1, or MNDOD; and keywords: CHARGE=1, PRECISE, VECTORS, ALLVEC, BONDS, GEO-OK, EF, PL, LET, T=10D, GNORM= 10^{-4} , and SCFCRT= 10^{-10}). The final value of the Gradient Norm of the optimized (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium-ion structure; PM3: 0.017, AM1: 0.013, MNDOD: 0.022.

^b In CD₃CN.

From the C–C bond lengths (see Fig. 1c caption), it can be inferred that, although the positive charge of **3** is mainly localized at the C α carbon atom, forming a 3-guaiazulenylmethylium-ion structure, the positive charge apparently is transferred to the seven-membered ring, forming a 3-guaiazulenylium-ion structure.

3. Conclusion

We have reported the following five points in this paper: (i) the reaction of guaiazulene (1) with *o*-formylbenzoic acid (2) in diethyl ether in the presence of hexafluorophosphoric acid at 25 °C for 90 min gave the corresponding monocarbenium-ion compound, [2-(carboxy)phenyl](3-guaiazulenyl)methylium hexafluorophosphate (3), quantitatively, which upon treatment with aq NaHCO₃ led to 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5) in 96% isolated yield; (ii) similarly, the reaction of 1 with 2 in methanol under the same conditions as the above reaction afforded two kinds of inseparable monocarbenium-ion compounds, 3 and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (4) with an equilibrium between them, which upon reaction with a solution of NaBH₄ in ethanol at 25 °C for 30 min led to 5 in 46% isolated yield and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (6) in 37% isolated yield; (iii) along with the ¹H and ¹³C NMR spectral properties of a solution of 5 in trifluoroacetic acid- d_1 at 25 °C, whose molecular structure was converted to a ca. 1:1 equilibrium mixture of 7 possessing a partial structure of the 3-guaiazulenylmethylium-ion and 8 possessing a partial structure of the 3-guaiazulenium-ion, comparative studies on the 1 H and 13 C NMR spectral properties of 7 and 8 with those of the monocarbenium-ion compound, (3-guaiazulenyl)[4-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (A), 5, and 6 were reported; (iv) from these NMR studies, it could be inferred that the positive charge of the 3-guaiazulenylmethylium-ion part of 7 apparently was transferred to the seven-membered ring, generating a resonance form of the 3-guaiazulenylium-ion structure η' , and the same result could be inferred for the previously documented monocarbenium-ion compounds A-I; and (v) moreover, referring to a comparative study on the C-C bond lengths of A observed by the X-ray crystallographic analysis with those of the optimized (3-guaiazulenvl)[4-(methoxycarbonyl)phenyl]methylium-ion structure for A calculated by a WinMOPAC (Ver. 3.0) program using PM3, AM1, or MNDOD as a semiempirical Hamiltonian, the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for 3 calculated using PM3 was described.

4. Experimental

4.1. General

Thermal (TGA/DTA) analysis was carried out on a Shimadzu DTG-50H thermal analyzer. FABMS spectra were taken on a JEOL The Tandem Mstation JMS-700 TKM data system. UV–vis and IR spectra were taken on a Beckman DU640 spectrophotometer and a Shimadzu FTIR-4200 Grating spectrometer, respectively. NMR spectra were recorded with a JEOL GX-500 (500 MHz for ¹H and 125 MHz for

¹³C) or JNM-ECA600 (600 MHz for ¹H and 150 MHz for ¹³C) cryospectrometer at 25 °C. The ¹H NMR spectra were assigned using the computer-assisted simulation analysis (the software: *g*NMR developed by Adept Scientific plc) on Dell Dimension 8300 personal computer with a Pentium (R) 4 processor.

4.1.1. Preparation of 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5). To a solution of commercially available guaiazulene (1) (50 mg, 0.25 mmol) in diethyl ether (1.0 mL) was added a solution of commercially available o-formylbenzoic acid (2) (58 mg, 0.39 mmol) in diethyl ether (1.0 mL) containing hexafluorophosphoric acid (60%) aqueous solution, 150 µL), turning the dark-blue solution into a yellow solution, rapidly. The mixture was stirred at 25 °C for 90 min, giving a monocarbenium-ion compound, [2-(carboxy)phenyl](3-guaiazulenyl)methylium hexafluoro-phosphate^{30,31} (3), quantitatively. After the reaction, thereactant was carefully neutralized with aq NaHCO₃ and extracted with diethyl ether $(3 \times 10 \text{ mL})$. The extract was washed with water, dried (Na₂SO₄), and evaporated in vacuo. The residue thus obtained was purified by silica gel column chromatography with hexane-ethyl acetate (8:2, v/v) as an eluant. The obtained crude product 5 was recrystallized from hexane-benzene (5:1, v/v) (several times) to provide pure 5 as stable crystals (80 mg, 0.24 mmol, 96% yield).

Compound **3**:^{30,31} yellow powder; mp >100 °C (decomp.) [determined by thermal analysis (TGA and DTA)]; UV– vis λ_{max} (CF₃COOH) nm 277, 358, and 437; IR ν_{max} (KBr) cm⁻¹ 1701 (C=O), 1277, 1053 (C–O), and 856, 559 (PF₆); FABMS (3-nitrobenzyl alcohol matrix), *m/z* 331 ([M–PF₆]⁺, 100%); exact FABMS (3-nitrobenzyl alcohol matrix) found: *m/z* 331.1678, calcd for C₂₃H₂₃O₂: [M–PF₆]⁺, *m/z* 331.1698.

Compound 5: blue prisms $[R_f=0.25 \text{ on silica gel TLC} (hex$ ane-AcOEt=8:2, v/v], mp 113 and >200 °C (decomp.) [determined by thermal analysis (TGA and DTA)]; UV–vis λ_{max} (CH₃CN) nm (log ε) 245 (4.48), 292 (4.68), 305sh (4.38), 338sh (3.67), 352 (3.81), 368 (3.82), 590 (2.71), 636sh (2.62), and 704sh (2.18); IR ν_{max} (KBr) cm⁻¹ 1755 (C=O); FABMS (3-nitrobenzyl alcohol matrix) m/z 331 ([M+H]⁺, 100%) and 330 (M⁺, 72%); exact FABMS (3-nitrobenzyl alcohol matrix) found: m/z 331.1697, calcd for C₂₃H₂₃O₂: [M+H]⁺, 331.1698; 500 MHz ¹H NMR (CD₃CN), signals based on the 3-guaiazulenyl group: δ 1.35 (6H, d, J=6.9 Hz, (CH₃)₂CH-7'), 2.46 (3H, s, Me-1'), 3.12 (1H, sept, J=6.9 Hz, Me₂CH-7'), 3.20 (3H, s, Me-4'), 6.99 (1H, s, H-2'), 7.22 (1H, d, J=10.5 Hz, H-5'), 7.56 (1H, dd, J=10.5, 2.0 Hz, H-6'), and 8.26 (1H, d, J=2.0 Hz, H-8'); signals based on the 2-benzofuran-1(3H)-one part: δ 7.42 (1H, ddd, J=7.7, 1.2, 0.9 Hz, H-4), 7.56 (1H, s, H-3), 7.63 (1H, br ddd, J=7.8, 7.6, 1.2 Hz, H-6), 7.74 (1H, ddd, J=7.7, 7.6, 1.2 Hz, H-5), and 7.92 (1H, ddd, J=7.8, 1.2, 0.9 Hz, H-7); 125 MHz ¹³C NMR (CD₃CN) δ 171.2 (C-1), 152.0 (C-3a), 146.5 (C-4'), 143.1 (C-7'), 140.1 (C-8a'), 138.0 (C-2'), 136.6 (C-6'), 135.7 (C-8'), 135.6 (C-3a'), 135.1 (C-5), 130.1 (C-6), 129.8 (C-5'), 127.6 (C-7a), 125.8 (C-7), 125.8 (C-1'), 124.8 (C-4), 121.5 (C-3'), 80.2 (C-3), 38.4 (Me₂CH-7'), 27.8 (Me-4'), 24.7 ((CH₃)₂CH-7'), and 12.8 (Me-1').

4.1.2. Preparation of 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5) and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methane (6). To a solution of guaiazulene (1) (22 mg, 0.11 mmol) in methanol (1.0 mL) was added a solution of o-formylbenzoic acid (2) (26 mg, 0.17 mmol) in methanol (1.0 mL) containing hexafluorophosphoric acid (60% aqueous solution, 50 µL), turning the dark-blue solution into a yellow solution, rapidly. The mixture was stirred at 25 °C for 90 min, giving two kinds of inseparable monocarbenium-ion compounds, [2-(carboxy)phenyl]-(3-guaiazulenvl)methylium hexafluorophosphate (3) and (3-guaiazulenyl)[2-(methoxycarbonyl)phenyl]methylium hexafluorophosphate (4), efficiently, and then a solution of NaBH₄ (100 mg, 2.64 mmol) in ethanol (5.0 mL) was added and further stirred at 25 °C for 30 min. After the reaction, the reaction solution was evaporated in vacuo. The reactant thus obtained was dissolved in diethyl ether (30 mL), washed with water, dried (Na₂SO₄), and evaporated in vacuo. The obtained residue was purified by silica gel column chromatography with benzene-hexane (1:1, v/v) as an eluant (several times), giving pure products 5 (17 mg, 52 µmol, 46% yield) and 6 (14 mg, 40 µmol, 37% yield), respectively.

Compound **3**: see Section 4.1.1.

Compound 4: yellow powder; FABMS (3-nitrobenzyl alcohol matrix), m/z 345 ([M–PF₆]⁺, 100%); exact FABMS (3-nitrobenzyl alcohol matrix) found: m/z 345.1869, calcd for C₂₄H₂₅O₂: [M–PF₆]⁺, m/z 345.1855.

Compound 5: see Section 4.1.1.

Compound 6: blue powder $[R_f=0.50 \text{ on silica gel TLC} (hex$ ane-AcOEt=8:2, v/v], mp 87 °C and mp >200 °C (decomp.) [determined by thermal analysis (TGA and DTA)]; UV-vis λ_{max} (CH₃CN) nm (log ε) 219 (4.32), 246 (4.42), 290 (4.67), 306sh (4.29), 338sh (3.62), 353 (3.80), 370 (3.73), 622 (2.69), 675sh (2.60), and 748sh (2.18); IR ν_{max} (KBr) cm⁻¹ 1713 (C=O); FABMS (3-nitrobenzyl alcohol matrix) m/z 346 (M⁺, 100%); exact FABMS (3-nitrobenzyl alcohol matrix) found: m/z 346.1930, calcd for C₂₄H₂₆O₂: M⁺, *m*/z 346.1933; 500 MHz ¹H NMR (CD₃CN), signals based on the 3-guaiazulenylmethyl group: δ 1.32 (6H, d, J=6.9 Hz, (CH₃)₂CH-7'), 2.54 (3H, s, Me-1'), 2.75 (3H, s, Me-4'), 3.03 (1H, sept, J=6.9 Hz, Me₂CH-7'), 4.91 (2H, s, 1-CH₂-3'), 6.82 (1H, d, J=10.6 Hz, H-5'), 7.22 (1H, s, H-2'), 7.31 (1H, dd, J=10.6, 2.0 Hz, H-6'), and 8.11 (1H, d, J=2.0 Hz, H-8'); signals based on the 2-(methoxycarbonyl)benzene part: δ 3.79 (3H, s, 2-COOCH₃), 6.80 (1H, dd, J=7.6, 1.4 Hz, H-6), 7.27 (1H, ddd, J=7.7, 7.6, 1.4 Hz, H-4), 7.35 (1H, ddd, J=7.6, 7.6, 1.4 Hz, H-5), and 7.87 (1H, dd, J=7.7, 1.4 Hz, H-3); 125 MHz ¹³C NMR (CD₃CN) δ 169.0 (2-COOCH₃), 146.4 (C-4'), 145.3 (C-1), 141.5 (C-2'), 140.1 (C-7'), 138.8 (C-8a'), 135.9 (C-6'), 134.4 (C-8'), 134.0 (C-3a'), 132.9 (C-5), 131.5 (C-6), 131.1 (C-3), 130.6 (C-2), 127.1 (C-5'), 126.8 (C-4), 126.6 (C-3'), 125.5 (C-1'), 52.5 (2-COOCH₃), 38.3 (Me₂CH-7'), 35.9 (1-CH₂-3'), 26.7 (Me-4'), 24.7 ((CH₃)₂CH-7'), and 12.9 (Me-1').

4.1.3. ¹H and ¹³C NMR spectral data of 3-(3-guaiazulenyl)-2-benzofuran-1(3H)-one (5) in trifluoroacetic acid- d_1 . The ¹H and ¹³C NMR spectra including 2D NMR (i.e., H–H COSY, HMQC, and HMBC) of a solution of 3-(3-guaiazulenyl)-2-benzofuran-1(3*H*)-one (**5**) (20 mg, 61 µmol) in trifluoroacetic acid- d_1 (1.0 mL), whose molecular structure was converted to [2-(carboxy- d_1)phenyl](3-guaiazulenyl)-methylium-ion structure **7** via the deuteronated **5** at the carbonyl group and the deuteronated 3-(3-guaiazulenyl)-2-benzofuran-1(3*H*)-one **8** at the C-3' position (see Fig. 2), quantitatively, were measured. A careful study of the 600 MHz ¹H NMR signals for this measurement solution led to a ca. 1:1 equilibrium mixture of compounds **7** and **8**. Exact FABMS (3-nitrobenzyl alcohol matrix) of this solution, found: *m*/*z* 332.1729, calcd for C₂₃H₂₂DO₂: M⁺, *m*/*z* 332.1761.

Compound 7: 600 MHz ¹H NMR (CF₃COOD), signals based on the 3-guaiazulenylmethylium-ion part: δ 1.53 (6H, d, J=7.2 Hz, (CH₃)₂CH-7'), 2.48 (3H, s, Me-1'), 3.45 (3H, s, Me-4'), 3.49 (1H, sept, J=7.2 Hz, Me₂CH-7'), 7.61 (1H, s, H-2'), 8.43 (1H, dd, J=11.0, 2.0 Hz, H-6'), 8.57 (1H, d, J=11.0 Hz, H-5'), 8.66 (1H, d, J=2.0 Hz, H-8'), and 9.47 (1H, s, HC⁺- α); signals based on the benzoic acid part: δ 7.54 (1H, d, J=7.6 Hz, H-6), 7.73 (1H, dd, J=7.8, 7.7 Hz, H-4), 7.85 (1H, dd, J=7.7, 7.6 Hz, H-5), and 8.40 (1H, d, J=7.8 Hz, H-3); 150 MHz ¹³C NMR (CF₃COOD) δ 174.5 (C-7'), 173.5 (2-COOD), 164.1 (C-8a'), 158.4 (C-4'), 154.1 (C-3a'), 151.8 $(HC^+-\alpha)$, 151.4 (C-5'), 146.3 (C-1'), 145.4 (C-6'), 142.1 (C-2'), 141.1 (C-3'), 139.4 (C-8'), 138.8 (C-1), 135.5 (C-5), 134.2 (C-6), 133.9 (C-3), 132.3 (C-4), 128.9 (C-2), 41.4 (Me₂CH-7'), 28.8 (Me-4'), 23.6 ((CH₃)₂CH-7'), and 13.' (Me-1').

Compound 8: 600 MHz ¹H NMR (CF₃COOD), signals based on the 3-guaiazulenylium-ion part: δ 1.54 (6H, d, J=7.2 Hz, (CH₃)₂CH-7'), 2.27 (1H, s, Me-1'), 3.30 (3H, s, Me-4'), 3.52 (1H, sept, J=7.2 Hz, Me₂CH-7'), 6.50 (1H, s, H-2'), 8.58 (1H, dd, J=11.0, 2.0 Hz, H-6'), 8.63 (1H, d, J=2.0 Hz, H-8'), and 8.65 (1H, d, J=11.0 Hz, H-5'); signals based on the 2-benzofuran-1(3H)-one part: δ 6.58 (1H, s, H-3), 7.76 (1H, dd, J=7.8, 7.7 Hz, H-6), 7.95 (1H, d, J=7.8 Hz, H-4), 7.99 (1H, dd, J=7.8, 7.7 Hz, H-5), and 8.00 (1H, d, J=7.8 Hz, H-7); 150 MHz 13 C NMR (CF₃COOD) & 179.7 (C-7'), 175.5 (C-1), 170.1 (C-8a'), 166.2 (C-3a'), 159.8 (C-4'), 152.2 (C-5'), 149.9 (C-1'), 149.1 (C-3a), 147.4 (C-6'), 145.5 (C-2'), 140.7 (C-8'), 137.9 (C-5), 132.4 (C-6), 128.0 (C-7), 125.2 (C-7a), 123.2 (C-4), 79.5 (C-3), 57.4 (C-3', $J_{C-D}=19.4$ Hz), 42.0 (Me₂CH-7'), 26.0 (Me-4'), 23.6 ((CH₃)₂CH-7'), and 13.1 (Me-1').

Acknowledgements

This work was partially supported by a Grant-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References and notes

- Oda, M.; Uchiyama, T.; Kajioka, T.; Hashimoto, T.; Miyatake, R.; Kuroda, S. *Heterocycles* 2000, *53*, 2071–2077.
- Oda, M.; Fukuta, A.; Kajioka, T.; Uchiyama, T.; Kainuma, H.; Miyatake, R.; Kuroda, S. *Tetrahedron* **2000**, *56*, 9917–9925.

- Okazaki, T.; Laali, K. K. Org. Biomol. Chem. 2003, 1, 3078– 3093.
- (a) Reid, D. H.; Stafford, W. H.; Stafford, W. L.; McLennan, G.; Voigt, A. J. Chem. Soc. 1958, 1110–1117; (b) Kirby, E. C.; Reid, D. H. J. Chem. Soc. 1960, 494–501; (c) Asato, A. E.; Li, X.-Y.; Mead, D.; Patterson, G. M. L.; Liu, R. S. H. J. Am. Chem. Soc. 1990, 112, 7398–7399.
- (a) Fraser, M.; Raid, D. H. J. Chem. Soc. 1963, 1421–1429; (b) Hünig, S.; Scheutzow, D.; Friedrich, H. J. Angew. Chem. 1964, 76, 818.
- 6. (a) Hünig, S.; Ort, B. *Liebigs Ann. Chem.* 1984, 1905–1935; (b) Hünig, S.; Ort, B. *Liebigs Ann. Chem.* 1984, 1936–1951; (c) Hünig, S.; Ort, B. *Liebigs Ann. Chem.* 1984, 1959–1971.
- Ito, S.; Fujita, M.; Morita, N.; Asao, T. Bull. Chem. Soc. Jpn. 2000, 73, 721–727.
- Ito, S.; Morita, N.; Asao, T. Bull. Chem. Soc. Jpn. 2000, 73, 1865–1874.
- Ito, S.; Kikuchi, S.; Okujima, T.; Morita, N.; Asao, T. J. Org. Chem. 2001, 66, 2470–2479.
- Ito, S.; Kubo, T.; Morita, N.; Ikoma, T.; Tero-Kubota, S.; Tajiri, A. J. Org. Chem. 2003, 68, 9753–9762.
- Ito, S.; Kubo, T.; Kondo, M.; Kabuto, C.; Morita, N.; Asao, T.; Fujimori, K.; Watanabe, M.; Harada, N.; Yasunami, M. *Org. Biomol. Chem.* **2003**, *1*, 2572–2580.
- Ito, S.; Kawakami, J.; Tajiri, A.; Ryuzaki, D.; Morita, N.; Asao, T.; Watanabe, M.; Harada, N. *Bull. Chem. Soc. Jpn.* **2005**, *78*, 2051–2065.
- 13. Naya, S.; Nitta, M. J. Chem. Soc., Perkin Trans. 2 2001, 275–281.
- Brulé, C.; Holmer, S.; Krechanin, S.; Laali, K. K. Org. Biomol. Chem. 2006, 4, 3077–3084.
- Takekuma, S.; Sasaki, M.; Takekuma, H.; Yamamoto, H. Chem. Lett. 1999, 999–1000.
- 16. Takekuma, S.; Takata, S.; Sasaki, M.; Takekuma, H. *Tetrahedron Lett.* **2001**, *42*, 5921–5924.
- 17. Takekuma, S.; Tanizawa, M.; Sasaki, M.; Matsumoto, T.; Takekuma, H. *Tetrahedron Lett.* **2002**, *43*, 2073–2078.
- Sasaki, M.; Nakamura, M.; Hannita, G.; Takekuma, H.; Minematsu, T.; Yoshihara, M.; Takekuma, S. *Tetrahedron Lett.* 2003, 44, 275–279.
- Sasaki, M.; Nakamura, M.; Uriu, T.; Takekuma, H.; Minematsu, T.; Yoshihara, M.; Takekuma, S. *Tetrahedron* 2003, 59, 505–516.
- Nakamura, M.; Sasaki, M.; Takekuma, H.; Minematsu, T.; Takekuma, S. Bull. Chem. Soc. Jpn. 2003, 76, 2051–2052.
- Takekuma, S.; Sasaki, K.; Nakatsuji, M.; Sasaki, M.; Minematsu, T.; Takekuma, H. *Bull. Chem. Soc. Jpn.* **2004**, *77*, 379–380.

- Nakatsuji, M.; Hata, Y.; Fujihara, T.; Yamamoto, K.; Sasaki, M.; Takekuma, H.; Yoshihara, M.; Minematsu, T.; Takekuma, S. *Tetrahedron* 2004, *60*, 5983–6000.
- Takekuma, S.; Hata, Y.; Nishimoto, T.; Nomura, E.; Sasaki, M.; Minematsu, T.; Takekuma, H. *Tetrahedron* 2005, *61*, 6892– 6907.
- Takekuma, S.; Takahashi, K.; Sakaguchi, A.; Shibata, Y.; Sasaki, M.; Minematsu, T.; Takekuma, H. *Tetrahedron* 2005, *61*, 10349–10362.
- Takekuma, S.; Takahashi, K.; Sakaguchi, A.; Sasaki, M.; Minematsu, T.; Takekuma, H. *Tetrahedron* 2006, 62, 1520– 1526.
- Takekuma, S.; Hirosawa, M.; Morishita, S.; Sasaki, M.; Minematsu, T.; Takekuma, H. *Tetrahedron* 2006, 62, 3732– 3738.
- Takekuma, S.; Mizutani, K.; Inoue, K.; Nakamura, M.; Sasaki, M.; Minematsu, T.; Sugimoto, K.; Takekuma, H. *Tetrahedron*, submitted for publication.
- Takekuma, S.; Tone, K.; Sasaki, M.; Minematsu, T.; Takekuma, H. *Tetrahedron*, in press. doi: 10.1016/j.tet.2006.12.093
- Matsubara, Y.; Yamamoto, H.; Nozoe, T. Studies in Natural Products Chemistry. *Stereoselective Synthesis (Part I)*; Attaur-Rahman, Ed.; Elsevier: Amsterdam, 1994; Vol. 14, pp 313–354.
- 30. During the recrystallization of **3**, this compound was gradually converted to **5**.
- 31. The ¹H and ¹³C NMR spectra including 2D NMR (i.e., H–H COSY, HMQC, and HMBC) of a solution of **3** in trifluoroacetic acid-*d*₁ at 25 °C showed two kinds of carbocation compounds, i.e., the [2-(carboxy-*d*₁)phenyl](3-guaiazulenyl)methyliumion structure **7** and the deuteronated 3-(3-guaiazulenyl)-2-benzofuran-1(3*H*)-one **8** at the C-3' position of **5** (see Fig. 2). A careful study of the 600 MHz ¹H NMR signals for this sample led us to a ca. 1:1 equilibrium mixture of **7** and **8** under this measurement conditions.
- Guaiazulene 1: UV–vis λ_{max} (CH₃CN) nm (log ε) 213 (4.10), 244 (4.39), 284 (4.61), 301sh (4.03), 348 (3.65), 365 (3.46), 600 (2.68), 648sh (2.61), and 721sh (2.20).
- 33. The following MO calculation program and calculation conditions were used for **3** (i.e., the software: WinMOPAC Ver. 3.0 developed by Fujitsu Ltd., Japan; semiempirical Hamiltonian: PM3; and keywords: CHARGE=1, PRECISE, VECTORS, ALLVEC, BONDS, GEO-OK, EF, PL, LET, T=10D, GNORM=10⁻⁴, and SCFCRT=10⁻¹⁰). The final value of the Gradient Norm of the optimized [2-(carboxy)phenyl](3-guaiazulenyl)methylium-ion structure for **3** showed 0.013.